Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
EClinicalMedicine ; 2023.
Article in English | EuropePMC | ID: covidwho-20235670

ABSTRACT

Background Activation of the TREM-1 pathway is associated with outcome in life threatening COVID-19. Data suggest that modulation of this pathway with nangibotide, a TREM-1 modulator may improve survival in TREM-1 activated patients (identified using the biomarker sTREM-1). Methods Phase 2 double-blind randomized controlled trial assessing efficacy, safety, and optimum treatment population of nangibotide (1.0 mg/kg/h) compared to placebo. Patients aged 18–75 years were eligible within 7 days of SARS-CoV-2 documentation and within 48 h of the onset of invasive or non-invasive respiratory support because of COVID-19-related ARDS. Patients were included from September 2020 to April 2022, with a pause in recruitment between January and August 2021. Primary outcome was the improvement in clinical status defined by a seven-point ordinal scale in the overall population with a planned sensitivity analysis in the subgroup of patients with a sTREM-1 level above the median value at baseline (high sTREM-1 group). Secondary endpoints included safety and all-cause 28-day and day 60 mortality. The study was registered in EudraCT (2020-001504-42) and ClinicalTrials.gov (NCT04429334). Findings The study was stopped after 220 patients had been recruited. Of them, 219 were included in the mITT analysis. Nangibotide therapy was associated with an improved clinical status at day 28. Fifty-two (52.0%) of patients had improved in the placebo group compared to 77 (64.7%) of the nangibotide treated population, an odds ratio (95% CI) for improvement of 1.79 (1.02–3.14), p = 0.043. In the high sTREM-1 population, 18 (32.7%) of placebo patients had improved by day 28 compared to 26 (48.1%) of treated patients, an odds ratio (95% CI) of 2.17 (0.96–4.90), p = 0.063 was observed. In the overall population, 28 (28.0%) of placebo treated patients were not alive at the day 28 visit compared to 19 (16.0%) of nangibotide treated patients, an absolute improvement (95% CI) in all-cause mortality at day 28, adjusted for baseline clinical status of 12.1% (1.18–23.05). In the high sTREM-1 population (n = 109), 23 (41.8%) of patients in the placebo group and 12 (22.2%) of patients in the nangibotide group were not alive at day 28, an adjusted absolute reduction in mortality of 19.9% (2.78–36.98). The rate of treatment emergent adverse events was similar in both placebo and nangibotide treated patients. Interpretation Whilst the study was stopped early due to low recruitment rate, the ESSENTIAL study demonstrated that TREM-1 modulation with nangibotide is safe in COVID-19, and results in a consistent pattern of improved clinical status and mortality compared to placebo. The relationship between sTREM-1 and both risk of death and treatment response merits further evaluation of nangibotide using precision medicine approaches in life threatening viral pneumonitis. Funding The study was sponsored by Inotrem SA.

2.
Lancet Respir Med ; 2023 May 31.
Article in English | MEDLINE | ID: covidwho-20235671

ABSTRACT

BACKGROUND: Activation of the triggering receptor expressed on myeloid cells-1 (TREM-1) pathway is associated with septic shock outcomes. Data suggest that modulation of this pathway in patients with activated TREM-1 might improve survival. Soluble TREM-1 (sTREM-1), a potential mechanism-based biomarker, might facilitate enrichment of patient selection in clinical trials of nangibotide, a TREM-1 modulator. In this phase 2b trial, we aimed to confirm the hypothesis that TREM1 inhibition might improve outcomes in patients with septic shock. METHODS: This double-blind, randomised, placebo-controlled, phase 2b trial assessed the efficacy and safety of two different doses of nangibotide compared with placebo, and aimed to identify the optimum treatment population, in patients across 42 hospitals with medical, surgical, or mixed intensive care units (ICUs) in seven countries. Non-COVID-19 patients (18-85 years) meeting the standard definition of septic shock, with documented or suspected infection (lung, abdominal, or urinary [in patients ≥65 years]), were eligible within 24 h of vasopressor initiation for the treatment of septic shock. Patients were randomly assigned in a 1:1:1 ratio to intravenous nangibotide 0·3 mg/kg per h (low-dose group), nangibotide 1·0 mg/kg per h (high-dose group), or matched placebo, using a computer-generated block randomisation scheme (block size 3). Patients and investigators were masked to treatment allocation. Patients were grouped according to sTREM-1 concentrations at baseline (established from sepsis observational studies and from phase 2a change to data) into high sTREM-1 (≥ 400 pg/mL). The primary outcome was the mean difference in total Sequential Organ Failure Assessment (SOFA) score from baseline to day 5 in the low-dose and high-dose groups compared with placebo, measured in the predefined high sTREM-1 (≥ 400 pg/mL) population and in the overall modified intention-to-treat population. Secondary endpoints included all-cause 28-day mortality, safety, pharmacokinetics, and evaluation of the relationship between TREM-1 activation and treatment response. This study is registered with EudraCT, 2018-004827-36, and Clinicaltrials.gov, NCT04055909. FINDINGS: Between Nov 14, 2019, and April 11, 2022, of 402 patients screened, 355 were included in the main analysis (116 in the placebo group, 118 in the low-dose group, and 121 in the high-dose group). In the preliminary high sTREM-1 population (total 253 [71%] of 355; placebo 75 [65%] of 116; low-dose 90 [76%] of 118; high-dose 88 [73%] of 121), the mean difference in SOFA score from baseline to day 5 was 0·21 (95% CI -1·45 to 1·87, p=0·80) in the low-dose group and 1·39 (-0·28 to 3·06, p=0·104) in the high-dose group versus placebo. In the overall population, the difference in SOFA score from baseline to day 5 between the placebo group and low-dose group was 0·20 (-1·09 to 1·50; p=0·76),and between the placebo group and the high-dose group was 1·06 (-0·23 to 2·35, p=0·108). In the predefined high sTREM-1 cutoff population, 23 (31%) patients in the placebo group, 35 (39%) in the low-dose group, and 25 (28%) in the high-dose group had died by day 28. In the overall population, 29 (25%) patients in the placebo, 38 (32%) in the low-dose, and 30 (25%) in the high-dose group had died by day 28. The number of treatment-emergent adverse events (111 [96%] patients in the placebo group, 113 [96%] in the low-dose group, and 115 [95%] in the high-dose group) and serious treatment-emergent adverse events (28 [24%], 26 [22%], and 31 [26%]) was similar between all three groups. High-dose nangibotide led to a clinically relevant improvement in SOFA score (of two points or more) from baseline to day 5 over placebo in those with higher cutoff concentrations (≥532 pg/mL) of sTREM-1 at baseline. Low dose nangibotide displayed a similar pattern with lower magnitude of effect across all cutoff values. INTERPRETATION: This trial did not achieve the primary outcome of improvement in SOFA score at the predefined sTREM-1 value. Future studies are needed to confirm the benefit of nangibotide at higher concentrations of TREM-1 activation. FUNDING: Inotrem.

3.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: covidwho-2294075

ABSTRACT

Severe forms of coronavirus 2019 (COVID-19) disease are caused by an exaggerated systemic inflammatory response and subsequent inflammation-related coagulopathy. Anti-inflammatory treatment with low dose dexamethasone has been shown to reduce mortality in COVID-19 patients requiring oxygen therapy. However, the mechanisms of action of corticosteroids have not been extensively studied in critically ill patients in the context of COVID-19. Plasma biomarkers of inflammatory and immune responses, endothelial and platelet activation, neutrophil extracellular trap formation, and coagulopathy were compared between patients treated or not by systemic dexamethasone for severe forms of COVID-19. Dexamethasone treatment significantly reduced the inflammatory and lymphoid immune response in critical COVID-19 patients but had little effect on the myeloid immune response and no effect on endothelial activation, platelet activation, neutrophil extracellular trap formation, and coagulopathy. The benefits of low dose dexamethasone on outcome in critical COVID-19 can be partially explained by a modulation of the inflammatory response but not by reduction of coagulopathy. Future studies should explore the impact of combining dexamethasone with other immunomodulatory or anticoagulant drugs in severe COVID-19.


Subject(s)
COVID-19 , Cytokines , Humans , SARS-CoV-2 , Critical Illness , COVID-19 Drug Treatment , COVID-19/complications , Dexamethasone/pharmacology , Dexamethasone/therapeutic use
4.
Front Med (Lausanne) ; 8: 780750, 2021.
Article in English | MEDLINE | ID: covidwho-2009871

ABSTRACT

Critical COVID-19, like septic shock, is related to a dysregulated systemic inflammatory reaction and is associated with a high incidence of thrombosis and microthrombosis. Improving the understanding of the underlying pathophysiology of critical COVID-19 could help in finding new therapeutic targets already explored in the treatment of septic shock. The current study prospectively compared 48 patients with septic shock and 22 patients with critical COVID-19 regarding their clinical characteristics and outcomes, as well as key plasmatic soluble biomarkers of inflammation, coagulation, endothelial activation, platelet activation, and NETosis. Forty-eight patients with matched age, gender, and co-morbidities were used as controls. Critical COVID-19 patients exhibited less organ failure but a prolonged ICU length-of-stay due to a prolonged respiratory failure. Inflammatory reaction of critical COVID-19 was distinguished by very high levels of interleukin (IL)-1ß and T lymphocyte activation (including IL-7 and CD40L), whereas septic shock displays higher levels of IL-6, IL-8, and a more significant elevation of myeloid response biomarkers, including Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) and IL-1ra. Subsequent inflammation-induced coagulopathy of COVID-19 also differed from sepsis-induced coagulopathy (SIC) and was characterized by a marked increase in soluble tissue factor (TF) but less platelets, antithrombin, and fibrinogen consumption, and less fibrinolysis alteration. In conclusion, COVID-19 inflammation-induced coagulopathy substantially differs from SIC. Modulating TF release and activity should be evaluated in critical COVID-19 patients.

5.
EBioMedicine ; 77: 103893, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1703351

ABSTRACT

BACKGROUND: SARS-CoV-2 targets endothelial cells through the angiotensin-converting enzyme 2 receptor. The resulting endothelial injury induces widespread thrombosis and microangiopathy. Nevertheless, early specific markers of endothelial dysfunction and vascular redox status in COVID-19 patients are currently missing. METHODS: Observational study including ICU and non-ICU adult COVID-19 patients admitted in hospital for acute respiratory failure, compared with control subjects matched for cardiovascular risk factors similar to ICU COVID-19 patients, and ICU septic shock patients unrelated to COVID-19. FINDINGS: Early SARS-CoV-2 infection was associated with an imbalance between an exacerbated oxidative stress (plasma peroxides levels in ICU patients vs. controls: 1456.0 ± 400.2 vs 436 ± 272.1 mmol/L; P < 0.05) and a reduced nitric oxide bioavailability proportional to disease severity (5-α-nitrosyl-hemoglobin, HbNO in ICU patients vs. controls: 116.1 ± 62.1 vs. 163.3 ± 46.7 nmol/L; P < 0.05). HbNO levels correlated with oxygenation parameters (PaO2/FiO2 ratio) in COVID-19 patients (R2 = 0.13; P < 0.05). Plasma levels of angiotensin II, aldosterone, renin or serum level of TREM-1 ruled out any hyper-activation of the renin-angiotensin-aldosterone system or leucocyte respiratory burst in ICU COVID-19 patients, contrary to septic patients. INTERPRETATION: Endothelial oxidative stress with ensuing decreased NO bioavailability appears as a likely pathogenic factor of endothelial dysfunction in ICU COVID-19 patients. A correlation between NO bioavailability and oxygenation parameters is observed in hospitalized COVID-19 patients. These results highlight an urgent need for oriented research leading to a better understanding of the specific endothelial oxidative stress that occurs during SARS-CoV-2. FUNDING: Stated in the acknowledgments section.


Subject(s)
COVID-19 , Adult , Endothelial Cells , Humans , Nitric Oxide , Oxidative Stress , SARS-CoV-2
6.
Frontiers in medicine ; 8, 2021.
Article in English | EuropePMC | ID: covidwho-1661044

ABSTRACT

Critical COVID-19, like septic shock, is related to a dysregulated systemic inflammatory reaction and is associated with a high incidence of thrombosis and microthrombosis. Improving the understanding of the underlying pathophysiology of critical COVID-19 could help in finding new therapeutic targets already explored in the treatment of septic shock. The current study prospectively compared 48 patients with septic shock and 22 patients with critical COVID-19 regarding their clinical characteristics and outcomes, as well as key plasmatic soluble biomarkers of inflammation, coagulation, endothelial activation, platelet activation, and NETosis. Forty-eight patients with matched age, gender, and co-morbidities were used as controls. Critical COVID-19 patients exhibited less organ failure but a prolonged ICU length-of-stay due to a prolonged respiratory failure. Inflammatory reaction of critical COVID-19 was distinguished by very high levels of interleukin (IL)-1β and T lymphocyte activation (including IL-7 and CD40L), whereas septic shock displays higher levels of IL-6, IL-8, and a more significant elevation of myeloid response biomarkers, including Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) and IL-1ra. Subsequent inflammation-induced coagulopathy of COVID-19 also differed from sepsis-induced coagulopathy (SIC) and was characterized by a marked increase in soluble tissue factor (TF) but less platelets, antithrombin, and fibrinogen consumption, and less fibrinolysis alteration. In conclusion, COVID-19 inflammation-induced coagulopathy substantially differs from SIC. Modulating TF release and activity should be evaluated in critical COVID-19 patients.

7.
Biosci Rep ; 41(7)2021 07 30.
Article in English | MEDLINE | ID: covidwho-1290282

ABSTRACT

Patients with sepsis display increased concentrations of sTREM-1 (soluble Triggering Receptor Expressed on Myeloid cells 1), and a phase II clinical trial focusing on TREM-1 modulation is ongoing. We investigated whether sTREM-1 circulating concentrations are associated with the outcome of patients with coronavirus disease 2019 (COVID-19) to assess the role of this pathway in COVID-19. This observational study was performed in two independent cohorts of patients with COVID-19. Plasma concentrations of sTREM-1 were assessed after ICU admission (pilot cohort) or after COVID-19 diagnosis (validation cohort). Routine laboratory and clinical parameters were collected from electronic patient files. Results showed sTREM-1 plasma concentrations were significantly elevated in patients with COVID-19 (161 [129-196] pg/ml) compared to healthy controls (104 [75-124] pg/ml; P<0.001). Patients with severe COVID-19 needing ICU admission displayed even higher sTREM-1 concentrations compared to less severely ill COVID-19 patients receiving clinical ward-based care (235 [176-319] pg/ml and 195 [139-283] pg/ml, respectively, P = 0.017). In addition, higher sTREM-1 plasma concentrations were observed in patients who did not survive the infection (326 [207-445] pg/ml) compared to survivors (199 [142-278] pg/ml, P<0.001). Survival analyses indicated that patients with higher sTREM-1 concentrations are at higher risk for death (hazard ratio = 3.3, 95%CI: 1.4-7.8). In conclusion, plasma sTREM-1 concentrations are elevated in patients with COVID-19, relate to disease severity, and discriminate between survivors and non-survivors. This suggests that the TREM-1 pathway is involved in the inflammatory reaction and the disease course of COVID-19, and therefore may be considered as a therapeutic target in severely ill patients with COVID-19.


Subject(s)
COVID-19/diagnosis , Triggering Receptor Expressed on Myeloid Cells-1/blood , Aged , Biomarkers/blood , COVID-19/blood , COVID-19/mortality , COVID-19/virology , Case-Control Studies , Female , Healthy Volunteers , Hospital Mortality , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Retrospective Studies , Risk Assessment/methods , SARS-CoV-2/isolation & purification , Severity of Illness Index , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL